Prim's Algorithm : node(vertex)-based approach(ranking)
Pseudo Code
F=empty set // 추가되는 edge 집합
Y=P{v1} // 추가되는 vertex 집합
while NOT solved yet{
1. select v in V-Y nearest to Y; // seletion
2. feasibility test (cycle?) // 불필요 -> 이미 가지고 있는 노드 집합에서 edge를 만들기 때문에
ADD v to Y.
3. if V == Y, then stop/exit.
}
// A C program for Prim's Minimum
// Spanning Tree (MST) algorithm. The program is
// for adjacency matrix representation of the graph
#include <limits.h>
#include <stdbool.h>
#include <stdio.h>
// Number of vertices in the graph
#define V 5
// A utility function to find the vertex with
// minimum key value, from the set of vertices
// not yet included in MST
int minKey(int key[], bool mstSet[])
{
// Initialize min value
int min = INT_MAX, min_index;
for (int v = 0; v < V; v++)
if (mstSet[v] == false && key[v] < min)
min = key[v], min_index = v;
return min_index;
}
// A utility function to print the
// constructed MST stored in parent[]
int printMST(int parent[], int graph[V][V])
{
printf("Edge \tWeight\n");
for (int i = 1; i < V; i++)
printf("%d - %d \t%d \n", parent[i], i, graph[i][parent[i]]);
}
// Function to construct and print MST for
// a graph represented using adjacency
// matrix representation
void primMST(int graph[V][V])
{
// Array to store constructed MST
int parent[V];
// Key values used to pick minimum weight edge in cut
int key[V];
// To represent set of vertices included in MST
bool mstSet[V];
// Initialize all keys as INFINITE
for (int i = 0; i < V; i++)
key[i] = INT_MAX, mstSet[i] = false;
// Always include first 1st vertex in MST.
// Make key 0 so that this vertex is picked as first vertex.
key[0] = 0;
parent[0] = -1; // First node is always root of MST
// The MST will have V vertices
for (int count = 0; count < V - 1; count++) {
// Pick the minimum key vertex from the
// set of vertices not yet included in MST
int u = minKey(key, mstSet);
// Add the picked vertex to the MST Set
mstSet[u] = true;
// Update key value and parent index of
// the adjacent vertices of the picked vertex.
// Consider only those vertices which are not
// yet included in MST
for (int v = 0; v < V; v++)
// graph[u][v] is non zero only for adjacent vertices of m
// mstSet[v] is false for vertices not yet included in MST
// Update the key only if graph[u][v] is smaller than key[v]
if (graph[u][v] && mstSet[v] == false && graph[u][v] < key[v])
parent[v] = u, key[v] = graph[u][v];
}
// print the constructed MST
printMST(parent, graph);
}
// driver program to test above function
int main()
{
/* Let us create the following graph
2 3
(0)--(1)--(2)
| / \ |
6| 8/ \5 |7
| / \ |
(3)-------(4)
9 */
int graph[V][V] = { { 0, 2, 0, 6, 0 },
{ 2, 0, 3, 8, 5 },
{ 0, 3, 0, 0, 7 },
{ 6, 8, 0, 0, 9 },
{ 0, 5, 7, 9, 0 } };
// Print the solution
primMST(graph);
return 0;
}
Proof of Greedy_algorithm
Prim's Theorem : Prim's algo produces MST
Induction : CS에서 많이 사용되는 증명 방법 -> 특히, greedy algo에서 많이 사용
(Base) F=empty is promising. (MST를 만들어 낸다.)
(H) Assume : Prim's algo produces MST (MST T=(Y,F))
(Induction) F + next edge (그 다음 생성되는 MST) is MST.
증명과 주장이 반복
Proof on Induction is required --> Lemma.
(technique : proof by contradiction)
Contradiction: NOT - F + next edge (그 다음 생성되는 MST) is MST.
T=(Y,F) ==> next prim's algo. T(prim)=(Y+v, F+e) MST X.
--> there exist another optimal MST:T(opt)=(Y+v', F+e') MST O
summary : edge를 추가했을 때 다른 최적으 경로가 없다는 것을 보여주며 반박.
'알고리즘 > Greedy' 카테고리의 다른 글
MST (kruskal's algorithm) (0) | 2022.04.22 |
---|---|
Greedy란 (0) | 2022.04.14 |
배낭 문제 (0) | 2021.07.19 |